工业大数据应用的四大挑战
然而,工业企业的数据分析应用还普遍处于浅层阶段。最近,工业互联网产业联盟对国内外366个工业互联网平台应用案例进行了分析,40%的平台应用集中在产品或设备数据的检测、诊断与预测性分析领域,而在涉及数据范围更广、分析复杂度更高的经营管理优化和资源匹配协同等场景中,多数平台现有数据分析能力还无法满足应用要求,还需要进一步推动数据分析技术创新以及实现长期的工业知识积累。 未来,工业数据分析还需以问题为导向,把工业机理与数据科学方法紧密结合,让数据应用的层次再上台阶,从而产出更大价值。 三、推进工业大数据发展的思考 工业互联网的长期目标,是构建“数字双胞胎”。只有工业数据越来越丰富、全面,质量越来越高,“双胞胎”才可能长得像,才能“心心相印”。也只有这样,才能让物理世界的万物得以在数字世界重现,通过数字世界里的计算、分析、预测、优化,来指导物理世界的最优运行,从而开辟新的增长空间。为此,还需直面上述挑战,做好几个方面的工作: (1)夯实数据基础,高度重视数据资产管理的战略价值 企业不仅要关注最终数据分析的显性价值,更要重视数据采集、资产管理、治理、互操作与标准化等基础性工作的价值。磨刀不误砍柴工,只有地基牢固了,工业大数据才能可信、可用,成为价值源泉。 (2)抓住技术创新机遇 数据技术正在进入新的发展阶段,时序数据库、知识图谱、深度学习、安全多方计算等为工业大数据采集、整合与分析孕育着新的动力,将特定应用场景与这些新技术结合,有望带来新的突破。 (3)建立行业标准与规则 在行业层面,可以发挥行业联盟作用,在数据采集协议、数据模型等方面建立行业标准,扫清技术层面互通的障碍。同时,还要推动形成工业企业间数据共享的行业规则,创造安全可信、利益均衡的数据流通生态,为打破全行业数据孤岛铺平道路。
(编辑:鞍山站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |