加入收藏 | 设为首页 | 会员中心 | 我要投稿 鞍山站长网 (https://www.0412zz.com/)- 应用安全、运维、云计算、5G、云通信!
当前位置: 首页 > 综合聚焦 > 移动互联 > 评测 > 正文

智能物联-自动驾驶核心技术

发布时间:2019-07-12 20:17:39 所属栏目:评测 来源:佚名
导读:云计算、人工智能和工业互联成为自动驾驶的核心技术支撑。自动驾驶在快速改变汽车产业价值链和业务模式。如何在云层之上通过智能物联优化和完善自动驾驶产品和服务,成为传统汽车制造商和新兴汽车企业数字化转型业务战略重点。 中国自动驾驶市场潜力巨大。
副标题[/!--empirenews.page--]

云计算、人工智能和工业互联成为自动驾驶的核心技术支撑。自动驾驶在快速改变汽车产业价值链和业务模式。如何在云层之上通过智能物联优化和完善自动驾驶产品和服务,成为传统汽车制造商和新兴汽车企业数字化转型业务战略重点。

智能物联-自动驾驶核心技术

中国自动驾驶市场潜力巨大。麦肯锡预测,在中国乘用车市场,到2040年,自动驾驶将占到乘客总里程的约66%,自动驾驶车辆的销售收入将达0.9万亿美元,与自动驾驶相关的移动出行所带来的市场收入将达1.1万亿美元*1。自动驾驶作为智能汽车、智能交通发展的一致方向,已经被我国列为重点发展领域。国务院发布的《新一代人工智能发展规划》提出要重点发展汽车产业中的自动驾驶技术,并且要在智能交通建设和自主无人驾驶技术平台等方面实现突破。而这一进程的推进离不开云计算平台,以及云层之上大数据分析、物联网、人工智能的支撑。

  • 自动驾驶的价值

自动驾驶作为构建智慧出行服务新型产业生态的核心要素,在提高道路利用率的同时,还成为了消费升级的新动力。随着自动驾驶的不断完善,还将加速汽车产业链价值重心进一步向后服务倾斜,提高基于道路、交通等数字化服务的业务增长空间。

消费升级:自动驾驶技术的应用,让驾驶员能够从随时关注和调整汽车行驶状态的环境脱离出来,通过人工智能,办公、娱乐、生活等成为驾乘人员在汽车出行中的新选择,人们从传统的消费转变为智能消费,实现了消费体验的全面升级。

提高道路利用率:在城市交通中,由于车辆增长速度远大于道路增长速度,再加上不良行驶习惯,例如抢红灯、插队、路边乱停车等,使得道路拥堵成为城市交通管理的一大难题。自动驾驶与智能交通管理的协同使用,能够通过对路况变化的感知,自动调节车辆驾驶状态,更好地管理交通流量,从而有效释放道路资源,增强道路通行能力,缓解拥堵,提高道路利用率。

降低碳排放:自动驾驶技术成熟后,共享出行将成为城市交通的主要模式。届时,满足现有出行需求的汽车保有量将显著下降。根据密歇根大学的测算,一辆自动驾驶共享汽车(Shared Autonomous Car)可以取代9.34辆传统汽车*2。这不仅意味着车辆利用率的提高,同时车辆总量的减少将大幅降低碳排放,实现社会发展低碳化。

  • 我国自动驾驶发展三阶段

我国自动驾驶的发展历程可以分为三个阶段*3:

来源:麦肯锡,How china will help fuel the evolution in autonomous vehicles

第一阶段,~2023:在这一阶段,自动驾驶技术已经准备就绪,但受限于我国复杂的交通环境,例如高度复杂的标识、交通信号灯和道路标志尚未完全标准化,以及驾驶员不良习惯驾驶等,导致自动驾驶的初步使用,更多的在具有更少交通流量且驾驶要求更为简单的郊区进行,且驾驶速度只能维持在60km/小时以下的低速。

第二阶段,~2027:到2027年,自动驾驶技术不断发展,已经解决了城市和郊区驾驶的大部分所需条件,开始得到大规模的商业化采用。但自动驾驶还需解决坏天气带来的信号不佳,以及乡村独特的交通复杂性以及道路标识不统一的问题。

第三阶段,~2032:“移动即服务”(MaaS)在中国市场的快速增长,带来对自动驾驶出行的强烈需求。在这一阶段,随着自动驾驶技术的日益成熟和成本的逐步降低,自动驾驶将在城市、郊区和农村得到全面采用。

从技术角度而言,自动驾驶的过程涉及众多技术,其中感知、智能引擎和机器学习这三点非常关键。

感知:在工业互联网下,通过传感器、通信设备以及连接设备的数字化技术来感知多车型、多场景车辆数据,通过传感多数据交互,边缘端实时处理,实现实时、可靠的系统响应和感知。

智能引擎:在云层之上,结合大数据和人工智能,对收集的车辆海量数据进行实时处理,并作出智能决策,是实现自动驾驶的关键。这就需要自动驾驶系统具有高速可靠的计算能力,能够通过智能大数据分析,对车辆行驶做出相应决策。

深度学习:自动驾驶过程中,需要对基于汽车行驶的数据、性能评价进行智能判断、诊断和维护,这就对深度学习提出了要求,需要先进的深度学习框架,通过机器学习建模根据数据进行训练和改进。

  • AWS加速自动驾驶

全球先进的传统汽车制造商Rolls-Royce、BMW、Volvo、Toyota、Remault、福特、德国奥迪和新兴出行服务商如Lyft都是基于AWS ,以及云层之上的物联网、大数据和人工智能,满足车联网和自动驾驶的开发和部署需求。基于云平台灵活、丰富的计算资源,在运用大数据技术和先进的人工智能算法基础上,AWS自动驾驶系统分为车、云(平台)两层,通过车云协同,AWS一整套服务可助力自动驾驶的开发和部署。

AWS 具备及用户所需的存储,支持海量数据存储。AWS Snowball Edge Storage Optimized 提供了 100 TB 的容量和 24个 vCPU,满足本地存储和大型数据传输需求。

Amazon Elastic Compute Cloud (Amazon EC2) P3 实例提供灵活且强大的高性能计算能力,可以实现高达 1 petaflop 的混合精度性能,显著加快机器学习和高性能计算应用程序的速度。且Amazon EC2 P3 实例支持所有主流机器学习框架,包括Apache MXNet、TensorFlow 和 PyTorch 等。

Amazon SageMaker 机器学习托管服务,能够让自动驾驶研发人员快速构建、训练和部署机器学习模型,在减少研发工作量的同时降低成本,缩短产品面世周期。

AWS IoT Greengrass 提供边缘计算及机器学习推理功能,可以实时处理车辆中的本地规则和事件,同时尽可能降低向云传输数据的成本。

下面我们通过两个实际案例看看AWS 如何助力自动驾驶。

  • 丰田研究所利用AWS深度学习加快自动驾驶速度

(编辑:鞍山站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读