【干货】AI学术前沿与趋势
直白来讲,深度神经网络学习架构是在结构固定以后才开始学习,此后学习期间如果出现不准确情况,就要重新设计网络、再学习一次。而宽度学习则是设计好网络后,当面临学习不准确的情况,可以随时以横向的方式进行增量扩充,即通过增加神经元,以提高准确度。这种增量学习的模式也适用在数据实时的进入已训练成的神经网络模型当中,而不用重新对整个收集的数据再重新训练。 在安防领域,宽度学习网络的应用主要表现在两个方面:一是提升人工智能识别的可靠性。比如在人脸识别算法训练过程中,最好的数据当然是高清正脸无遮挡的干净人脸数据,但实际上测试推理过程中,很多的人脸数据并不完美,会出现被遮挡(墨镜、口罩)、模糊、非正脸角度的人脸照片。在做算法训练过程中,我们可以基于宽度学习网络架构,通过将干净人脸图片和缺陷人脸图片融合到一起做训练,甚至可以特意生成一些有缺陷的图片样本,由此来提高算法对缺陷图片的识别准确率,从而提升复杂场景下人脸识别算法的场景适应能力。二是解决数据标注的问题,在人工智能算法训练过程中,数据的标注也非常重要,如果标注错误,那么不管算法有多精确,训练的结果也不会理想。通过宽度学习网络构建的算法模型,可以很好地解决算法标注错误的问题。 通过研究团队的大量测试,可以看出宽度学习(BLS)以及它的各种变体和扩展结构具有良好的发展潜力,在实际应用中表现出其快速且高精度的优秀性能。目前宽度学习在很多技术领域都有展开应用,比如时间序列、高光谱分析、脑机信号分析、容错、基因鉴定与疾病检测、步态识别、3D打印以及智能交通等。随着人工智能技术研究的持续深入,宽度学习这种不需要深度结构的高效增量学习系统有望加速助推人工智能的发展。 ( 本文源自2019 a&s人工智能创新应用趋势论坛上中国自动化学会副理事长、欧洲科学院院士、IEEE Fellow、国家千人计划学者陈俊龙的主题演讲) (编辑:鞍山站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |